[인공지능] 케라스 기초 - 모델 가중치 확인
- 인공지능
- 2022. 2. 15. 20:49
참조
모델 가중치 확인
- Keras에서 모델의 가중치 확인하는 방법은 다음과 같습니다.
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, Flatten, Dense
inputs = Input(shape=(28,28,1))
x = Flatten(input_shape=(28,28,1))(inputs)
x = Dense(300, activation='relu')(x)
x = Dense(100, activation='relu')(x)
x = Dense(10, activation='softmax')(x)
model = Model(inputs=inputs, outputs = x)
model.summary()
# 모델의 레이어들이 리스트로 표현됨
print(model.layers)
hidden_2 = model.layers[2]
print(hidden_2.name)
# hidden_2 의 이름과 model의 'dense' 라는 이름이 같은지 확인
print(model.get_layer('dense') is hidden_2)
weights, biases = hidden_2.get_weights()
print(weights)
print(biases)
print(weights.shape)
print(biases.shape)
Model: "model"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) [(None, 28, 28, 1)] 0
flatten (Flatten) (None, 784) 0
dense (Dense) (None, 300) 235500
dense_1 (Dense) (None, 100) 30100
dense_2 (Dense) (None, 10) 1010
=================================================================
Total params: 266,610
Trainable params: 266,610
Non-trainable params: 0
_________________________________________________________________
[<keras.engine.input_layer.InputLayer object at 0x000001A5419EC430>, <keras.layers.core.flatten.Flatten object at 0x000001A541A2AF20>, <keras.layers.core.dense.Dense object at 0x000001A541A2B2B0>, <keras.layers.core.dense.Dense object at 0x000001A541A2BCA0>, <keras.layers.core.dense.Dense object at 0x000001A541B34310>]
dense
True
[[ 0.00056587 -0.04243091 0.00236596 ... 0.06860478 -0.00170662
0.0024661 ]
[-0.02283993 -0.05340238 0.07114606 ... 0.02561086 0.0419556
0.04638153]
[ 0.02495409 -0.06335379 0.0248038 ... 0.01537879 0.05100092
0.07438587]
...
[-0.06526858 -0.00506426 -0.0511626 ... -0.03112128 0.06302378
0.01169765]
[-0.00833626 0.06536442 -0.06423136 ... 0.03417568 0.06499887
-0.01175037]
[-0.0508355 -0.06425534 0.04946434 ... 0.03223608 0.07422277
0.04258387]]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
2. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
3. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
4. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
5. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
6. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
7. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
8. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
9. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
10. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
11. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
12. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
(784, 300)
(300,)
728x90
'인공지능' 카테고리의 다른 글
[인공지능] 케라스 기초 - 모델 저장과 복원 (0) | 2022.02.16 |
---|---|
[인공지능] 케라스 기초 - 모델 컴파일 (0) | 2022.02.15 |
[인공지능] 케라스 기초 - 모델 구성 방법 (0) | 2022.02.15 |
[인공지능] 케라스 기초 - 주요 레이어 (0) | 2022.02.15 |
[인공지능] 케라스 기초 - 주요 레이어 import 하는 방법 (0) | 2022.02.15 |
이 글을 공유하기